3.42 \(\int \frac {1}{x^2 (a+b \sec ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=75 \[ \frac {c \cos \left (\frac {a}{b}\right ) \text {Ci}\left (\frac {a}{b}+\sec ^{-1}(c x)\right )}{b^2}+\frac {c \sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\sec ^{-1}(c x)\right )}{b^2}-\frac {c \sqrt {1-\frac {1}{c^2 x^2}}}{b \left (a+b \sec ^{-1}(c x)\right )} \]

[Out]

c*Ci(a/b+arcsec(c*x))*cos(a/b)/b^2+c*Si(a/b+arcsec(c*x))*sin(a/b)/b^2-c*(1-1/c^2/x^2)^(1/2)/b/(a+b*arcsec(c*x)
)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {5222, 3297, 3303, 3299, 3302} \[ \frac {c \cos \left (\frac {a}{b}\right ) \text {CosIntegral}\left (\frac {a}{b}+\sec ^{-1}(c x)\right )}{b^2}+\frac {c \sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\sec ^{-1}(c x)\right )}{b^2}-\frac {c \sqrt {1-\frac {1}{c^2 x^2}}}{b \left (a+b \sec ^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(a + b*ArcSec[c*x])^2),x]

[Out]

-((c*Sqrt[1 - 1/(c^2*x^2)])/(b*(a + b*ArcSec[c*x]))) + (c*Cos[a/b]*CosIntegral[a/b + ArcSec[c*x]])/b^2 + (c*Si
n[a/b]*SinIntegral[a/b + ArcSec[c*x]])/b^2

Rule 3297

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[((c + d*x)^(m + 1)*Sin[e + f*x])/(d*(
m + 1)), x] - Dist[f/(d*(m + 1)), Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[
m, -1]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5222

Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*S
ec[x]^(m + 1)*Tan[x], x], x, ArcSec[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] && (GtQ[n,
0] || LtQ[m, -1])

Rubi steps

\begin {align*} \int \frac {1}{x^2 \left (a+b \sec ^{-1}(c x)\right )^2} \, dx &=c \operatorname {Subst}\left (\int \frac {\sin (x)}{(a+b x)^2} \, dx,x,\sec ^{-1}(c x)\right )\\ &=-\frac {c \sqrt {1-\frac {1}{c^2 x^2}}}{b \left (a+b \sec ^{-1}(c x)\right )}+\frac {c \operatorname {Subst}\left (\int \frac {\cos (x)}{a+b x} \, dx,x,\sec ^{-1}(c x)\right )}{b}\\ &=-\frac {c \sqrt {1-\frac {1}{c^2 x^2}}}{b \left (a+b \sec ^{-1}(c x)\right )}+\frac {\left (c \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sec ^{-1}(c x)\right )}{b}+\frac {\left (c \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sec ^{-1}(c x)\right )}{b}\\ &=-\frac {c \sqrt {1-\frac {1}{c^2 x^2}}}{b \left (a+b \sec ^{-1}(c x)\right )}+\frac {c \cos \left (\frac {a}{b}\right ) \text {Ci}\left (\frac {a}{b}+\sec ^{-1}(c x)\right )}{b^2}+\frac {c \sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\sec ^{-1}(c x)\right )}{b^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.28, size = 69, normalized size = 0.92 \[ \frac {c \left (-\frac {b \sqrt {1-\frac {1}{c^2 x^2}}}{a+b \sec ^{-1}(c x)}+\cos \left (\frac {a}{b}\right ) \text {Ci}\left (\frac {a}{b}+\sec ^{-1}(c x)\right )+\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\sec ^{-1}(c x)\right )\right )}{b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(a + b*ArcSec[c*x])^2),x]

[Out]

(c*(-((b*Sqrt[1 - 1/(c^2*x^2)])/(a + b*ArcSec[c*x])) + Cos[a/b]*CosIntegral[a/b + ArcSec[c*x]] + Sin[a/b]*SinI
ntegral[a/b + ArcSec[c*x]]))/b^2

________________________________________________________________________________________

fricas [F]  time = 1.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {1}{b^{2} x^{2} \operatorname {arcsec}\left (c x\right )^{2} + 2 \, a b x^{2} \operatorname {arcsec}\left (c x\right ) + a^{2} x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(a+b*arcsec(c*x))^2,x, algorithm="fricas")

[Out]

integral(1/(b^2*x^2*arcsec(c*x)^2 + 2*a*b*x^2*arcsec(c*x) + a^2*x^2), x)

________________________________________________________________________________________

giac [B]  time = 0.13, size = 226, normalized size = 3.01 \[ {\left (\frac {b \arccos \left (\frac {1}{c x}\right ) \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {a}{b} + \arccos \left (\frac {1}{c x}\right )\right )}{b^{3} \arccos \left (\frac {1}{c x}\right ) + a b^{2}} + \frac {b \arccos \left (\frac {1}{c x}\right ) \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {a}{b} + \arccos \left (\frac {1}{c x}\right )\right )}{b^{3} \arccos \left (\frac {1}{c x}\right ) + a b^{2}} + \frac {a \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {a}{b} + \arccos \left (\frac {1}{c x}\right )\right )}{b^{3} \arccos \left (\frac {1}{c x}\right ) + a b^{2}} + \frac {a \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {a}{b} + \arccos \left (\frac {1}{c x}\right )\right )}{b^{3} \arccos \left (\frac {1}{c x}\right ) + a b^{2}} - \frac {b \sqrt {-\frac {1}{c^{2} x^{2}} + 1}}{b^{3} \arccos \left (\frac {1}{c x}\right ) + a b^{2}}\right )} c \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(a+b*arcsec(c*x))^2,x, algorithm="giac")

[Out]

(b*arccos(1/(c*x))*cos(a/b)*cos_integral(a/b + arccos(1/(c*x)))/(b^3*arccos(1/(c*x)) + a*b^2) + b*arccos(1/(c*
x))*sin(a/b)*sin_integral(a/b + arccos(1/(c*x)))/(b^3*arccos(1/(c*x)) + a*b^2) + a*cos(a/b)*cos_integral(a/b +
 arccos(1/(c*x)))/(b^3*arccos(1/(c*x)) + a*b^2) + a*sin(a/b)*sin_integral(a/b + arccos(1/(c*x)))/(b^3*arccos(1
/(c*x)) + a*b^2) - b*sqrt(-1/(c^2*x^2) + 1)/(b^3*arccos(1/(c*x)) + a*b^2))*c

________________________________________________________________________________________

maple [A]  time = 0.15, size = 78, normalized size = 1.04 \[ c \left (-\frac {\sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}{\left (a +b \,\mathrm {arcsec}\left (c x \right )\right ) b}+\frac {\Si \left (\frac {a}{b}+\mathrm {arcsec}\left (c x \right )\right ) \sin \left (\frac {a}{b}\right )+\Ci \left (\frac {a}{b}+\mathrm {arcsec}\left (c x \right )\right ) \cos \left (\frac {a}{b}\right )}{b^{2}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(a+b*arcsec(c*x))^2,x)

[Out]

c*(-((c^2*x^2-1)/c^2/x^2)^(1/2)/(a+b*arcsec(c*x))/b+(Si(a/b+arcsec(c*x))*sin(a/b)+Ci(a/b+arcsec(c*x))*cos(a/b)
)/b^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {4 \, \sqrt {c x + 1} \sqrt {c x - 1} {\left (b \arctan \left (\sqrt {c x + 1} \sqrt {c x - 1}\right ) + a\right )} - 4 \, {\left (4 \, b^{3} x \arctan \left (\sqrt {c x + 1} \sqrt {c x - 1}\right )^{2} + b^{3} x \log \left (c^{2} x^{2}\right )^{2} + 8 \, b^{3} x \log \relax (c) \log \relax (x) + 4 \, b^{3} x \log \relax (x)^{2} + 8 \, a b^{2} x \arctan \left (\sqrt {c x + 1} \sqrt {c x - 1}\right ) + 4 \, {\left (b^{3} \log \relax (c)^{2} + a^{2} b\right )} x - 4 \, {\left (b^{3} x \log \relax (c) + b^{3} x \log \relax (x)\right )} \log \left (c^{2} x^{2}\right )\right )} \int \frac {\sqrt {c x + 1} \sqrt {c x - 1} {\left (b \arctan \left (\sqrt {c x + 1} \sqrt {c x - 1}\right ) + a\right )}}{4 \, {\left (b^{3} c^{2} \log \relax (c)^{2} + a^{2} b c^{2}\right )} x^{4} - 4 \, {\left (b^{3} \log \relax (c)^{2} + a^{2} b\right )} x^{2} + 4 \, {\left (b^{3} c^{2} x^{4} - b^{3} x^{2}\right )} \arctan \left (\sqrt {c x + 1} \sqrt {c x - 1}\right )^{2} + {\left (b^{3} c^{2} x^{4} - b^{3} x^{2}\right )} \log \left (c^{2} x^{2}\right )^{2} + 4 \, {\left (b^{3} c^{2} x^{4} - b^{3} x^{2}\right )} \log \relax (x)^{2} + 8 \, {\left (a b^{2} c^{2} x^{4} - a b^{2} x^{2}\right )} \arctan \left (\sqrt {c x + 1} \sqrt {c x - 1}\right ) - 4 \, {\left (b^{3} c^{2} x^{4} \log \relax (c) - b^{3} x^{2} \log \relax (c) + {\left (b^{3} c^{2} x^{4} - b^{3} x^{2}\right )} \log \relax (x)\right )} \log \left (c^{2} x^{2}\right ) + 8 \, {\left (b^{3} c^{2} x^{4} \log \relax (c) - b^{3} x^{2} \log \relax (c)\right )} \log \relax (x)}\,{d x}}{4 \, b^{3} x \arctan \left (\sqrt {c x + 1} \sqrt {c x - 1}\right )^{2} + b^{3} x \log \left (c^{2} x^{2}\right )^{2} + 8 \, b^{3} x \log \relax (c) \log \relax (x) + 4 \, b^{3} x \log \relax (x)^{2} + 8 \, a b^{2} x \arctan \left (\sqrt {c x + 1} \sqrt {c x - 1}\right ) + 4 \, {\left (b^{3} \log \relax (c)^{2} + a^{2} b\right )} x - 4 \, {\left (b^{3} x \log \relax (c) + b^{3} x \log \relax (x)\right )} \log \left (c^{2} x^{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(a+b*arcsec(c*x))^2,x, algorithm="maxima")

[Out]

-(4*sqrt(c*x + 1)*sqrt(c*x - 1)*(b*arctan(sqrt(c*x + 1)*sqrt(c*x - 1)) + a) - (4*b^3*x*arctan(sqrt(c*x + 1)*sq
rt(c*x - 1))^2 + b^3*x*log(c^2*x^2)^2 + 8*b^3*x*log(c)*log(x) + 4*b^3*x*log(x)^2 + 8*a*b^2*x*arctan(sqrt(c*x +
 1)*sqrt(c*x - 1)) + 4*(b^3*log(c)^2 + a^2*b)*x - 4*(b^3*x*log(c) + b^3*x*log(x))*log(c^2*x^2))*integrate(4*sq
rt(c*x + 1)*sqrt(c*x - 1)*(b*arctan(sqrt(c*x + 1)*sqrt(c*x - 1)) + a)/(4*(b^3*c^2*log(c)^2 + a^2*b*c^2)*x^4 -
4*(b^3*log(c)^2 + a^2*b)*x^2 + 4*(b^3*c^2*x^4 - b^3*x^2)*arctan(sqrt(c*x + 1)*sqrt(c*x - 1))^2 + (b^3*c^2*x^4
- b^3*x^2)*log(c^2*x^2)^2 + 4*(b^3*c^2*x^4 - b^3*x^2)*log(x)^2 + 8*(a*b^2*c^2*x^4 - a*b^2*x^2)*arctan(sqrt(c*x
 + 1)*sqrt(c*x - 1)) - 4*(b^3*c^2*x^4*log(c) - b^3*x^2*log(c) + (b^3*c^2*x^4 - b^3*x^2)*log(x))*log(c^2*x^2) +
 8*(b^3*c^2*x^4*log(c) - b^3*x^2*log(c))*log(x)), x))/(4*b^3*x*arctan(sqrt(c*x + 1)*sqrt(c*x - 1))^2 + b^3*x*l
og(c^2*x^2)^2 + 8*b^3*x*log(c)*log(x) + 4*b^3*x*log(x)^2 + 8*a*b^2*x*arctan(sqrt(c*x + 1)*sqrt(c*x - 1)) + 4*(
b^3*log(c)^2 + a^2*b)*x - 4*(b^3*x*log(c) + b^3*x*log(x))*log(c^2*x^2))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{x^2\,{\left (a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(a + b*acos(1/(c*x)))^2),x)

[Out]

int(1/(x^2*(a + b*acos(1/(c*x)))^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{2} \left (a + b \operatorname {asec}{\left (c x \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(a+b*asec(c*x))**2,x)

[Out]

Integral(1/(x**2*(a + b*asec(c*x))**2), x)

________________________________________________________________________________________